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The link between the crystal topology and symmetry is examined, focusing on

the conditions under which a structure with a given topology can exhibit a

certain symmetry. By defining embeddings for quotient graphs (finite

representations of crystal topologies) and the corresponding nets (the graph-

theoretical equivalents of structures), a strong relationship between the

automorphisms of the quotient graphs and the symmetry of the embedded

net is established. This allows one to constrain the relative node positions under

the premise that an embedding of a net has a certain symmetry, and allows one

to assign nodes to equivalents of Wyckoff positions. Two-dimensional examples

as well as known crystal structures are used to illustrate the findings. A

comparison with a related publication and a discussion on whether constraints

on distances between atoms and on bond angles result in restrictions on

symmetry without causing confusion conclude the work.

1. Introduction

Structures with the same topology exhibit an apparent

preference for symmetries in certain space groups. For

example, garnet structures possess the same or similar

symmetries for a wide range of compositions. Another

example is provided by the high- and low-temperature phases

of quartz: the high-temperature phases exhibit the symmetries

of space groups P6222 and P6422. These transform displacively

(via an intermediate incommensurate phase) into P3121 and

P3221, respectively, at low temperatures, where the space

groups of the low-temperature phases are subgroups of the

space groups of the high-temperature phases (Heany, 1994).

Visual examination of a pair of such related structures invites

speculations about the causes of these similarities: the

preserved connectivity or topology. Indeed, it has been shown

that a close relationship exists between the topology of a net

(that is, the graph-theoretical, dimensionless representation of

a structure) and the maximal symmetry a structure of a given

topology can assume (Eon, 1999; Grosse-Kunstleve, 1999;

Delgado-Friedrichs & O’Keeffe, 2003; Klee, 2004; Thimm &

Winkler, 2006). However, this observation is not quite satis-

fying as it leaves open questions:

(1) Can a net be embedded (coordinates assigned to nodes)

in such a way that a chosen symmetry is observable?

(2) Under what conditions is a given symmetry realized or

realizable?

(3) For a given net, do symmetries exist that defy displacive

phase transitions?

The following discussion of the copper structure further

motivates these questions, which have already been

addressed by Blatov (2007) and Baburin & Blatov (2007) for

selected classes of structures only. Here no such restriction is

made.

The work presented by Eon (1999) has a certain similarity

with the approach proposed here. As the notation, mathe-

matical tools and approach used are different enough to

disallow a one-to-one comparison, x7 compares the two

approaches.

2. An informal discussion: copper

Copper crystallizes in Fm�33m [Cu at (0, 0, 0) and a = 3.615 Å

(Downs & Hall-Wallace, 2003); space-group symbols follow

International Tables for Crystallography Volume A (Hahn,

1992)]. Each atom has 12 nearest neighbours at a distance of

2.5562 Å. The structure has one atom in a primitive cell.

One may ask whether lower-symmetry translationengleiche

embeddings of this net can exist, and if so, which symmetries

they have.

It is obvious that a displacive and translationengleiche phase

transition of copper cannot exist if a cubic (primitive) unit cell

is maintained. Consequently, the only way to reduce the

symmetry is to change the shape of the unit cell. A hypothe-

tical phase transition (through an non-uniform strain,

although this is unlikely to be observed in nature) can only

lead to space groups that are subgroups of Fm�33m but outside

the cubic system. Among many others, the space groups

I4=mmm and P1 are translationengleiche subgroups of Fm�33m.

That I4=mmm is possible is obvious: it is sufficient to change

the length of the cubic cell in the direction of the c axis.

However, P1 seems impossible: placing the Cu atom in a

triclinic cell results in a structure with symmetry P1 (for any

chosen origin).



Now, without reference to an existing structure, consider a

structure in which each copper atom is bonded to an addi-

tional, singly coordinated atom. These atoms considerably

change the symmetry. For example, an axis of rotational

symmetry is necessarily parallel to the bond linking the added

atom to the rest of the net and an inversion symmetry is

forbidden. Therefore, the ‘augmented’ structure cannot have

the same translational symmetry as copper and have cubic

symmetry. However, the theory presented in Thimm &

Winkler (2006) stipulates cubic symmetry (the additional

nodes are not parts of a cycle).

Adding a second set of singly bonded atoms changes the

maximal possible symmetry again: an inversion is again

possible.

Some of the reasons for the symmetry of the embedding of a

net being reduced with respect to the symmetry, as proposed

by Thimm & Winkler (2006), are:

(1) changing the cell parameters, which leads to a trans-

lationengleiche space group;

(2) changing the volume of the unit cell, which leads to a

non-translationengleiche and possibly non-klassengleiche

symmetry;

(3) nodes are moved away from the Wyckoff positions they

occupy in a maximal-symmetry embedding, inducing a non-

klassengleiche symmetry;

(4) the presence of singly connected nodes;

(5) the ideal symmetry constrains

(a) several nodes to be on the same (Wyckoff) position,

(b) nodes onto positions coinciding with edges, or

(c) nodes or edges into positions with physically mean-

ingless distances or angles to each other (see x8).

3. Crystals, nets, quotient graphs and embeddings

The conventional approach to defining quotient graphs [see

Chung et al. (1984) and Klein (1996)] lacks the notion of

independence of node positions under mathematical

reasoning. Therefore, Cohen & Megiddo (1991) and Thimm &

Winkler (2006) proposed an alternative definition of nets and

quotient graphs which is independent of an embedding or

structures. In this definition, quotient graphs (QGs) are first

defined as a set of labelled graphs, and only then are the nets

defined as a cross product of a quotient graph and an integer

vector space. An embedding is then essentially an assignment

of coordinates to nodes in the quotient graph and a choice of

basis vectors (details are given later). This section comple-

ments this definition with observations related to symmetries.

In Thimm & Winkler (2006), a quotient graph Q of

dimension D is defined as a finite graph consisting of N nodes

QN ¼ fnij1 � i � Ng and directed, labelled edges

QE ¼ fe ¼ ðni!
v

njÞg � QN � Z
D
�QN with dimension

D � 1. An edge e ¼ ðni!
v

njÞ is identical to the edge

e ¼ ðnj�!
�v

niÞ. The bar over the symbol for the edge is to

distinguish between the orientation of the two representations.

To avoid notational complexity, the latter notation shall only

be used when edge orientations matter.

A net G ¼ hQ;ZD
i is defined as the cross product of a

quotient graph Q of dimension D and an integer vector space

of the same dimension. In this cross product

GN ¼ niðxÞj1 � i � N; x 2 ZD
� �

is the set of nodes in G and

GE ¼

�
niðxÞ $ njðxþ vÞ

je ¼ ni!
�v

nj

� �
2 QE; x 2 ZD

�

is the set of (undirected) edges. Hereby, a net is defined

without recourse to an embedding (or a crystal structure), cell

parameters or atom positions.

For the purpose of creating a link between the dimension-

less crystal topology as described by a QG or a net (the graph-

theoretical equivalent of a structure), the embeddings of QGs

and nets are defined in the following. Superficially, an

embedding of a quotient graph is obtained from an assignment

of relative positions (relative atom positions in fractional

coordinates for a crystal structure).

Definition 3.1. Embedding of a QG. An embedding E of a QG

is a function QE ! R
D with EðeÞ ¼ �EðeÞ such that E is

consistent: for all cycles c in the QG

P
e2c

v ¼
P
e2c

EðeÞ ð1Þ

is true.

Note that the cycles form a vector space and for a finite QG

only a finite number of cycles need to be examined (see

Thimm & Winkler, 2006). Typically, the elements of E do not

exceed the range �1; . . . ; 1.

Fig. 1 shows an example for a QG and an embedding. That

equation (1) in Definition 3.1 is fulfilled is shown for two

selected cycles: ðe1; �ee2Þ and ðe1; e5; e3Þ,
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Figure 1
QL and an embedding E.



v1 � v2 ¼

�
0� 0

1� 0

�

¼
!
Eðe1Þ þ Eðe2Þ ¼

�
0:3� 0:3

0:5þ 0:5

�
¼

�
0

1

�
;

v1 þ v5 þ v3 ¼

�
0þ 1þ 0

1þ 0þ 0

�

¼
!
Eðe1Þ þ Eðe5Þ þ Eðe3Þ ¼

�
0:3þ 0:4þ 0:3

0:5þ 0:5þ 0:0

�
:

A trivial constraint – no two atoms can occupy the same

location – is expressed in the following definition.

Definition 3.2. Non-confusing embedding of a QG. An

embedding E of a QG is called non-confusing if for all paths

p ¼ ðn; . . . ; n0Þ with ðn 6¼ n0Þ the equation

P
e2p0
EðeÞ 6¼ 0 ð2Þ

holds.

(The case n ¼ n0 and
P

e2p v 6¼ 0 is covered by Definition 3.1.)

A non-confusing embedding of a QG is shown to result in

the equivalent to what Delgado-Friedrichs & O’Keeffe (2003)

define as a stable net or a net without collisions.

Equation (2) implies that EðeÞ is nonzero for all edges –

which is true for QL (this QG is shown in Fig. 1). Definition 3.2

is also fulfilled for p ¼ ðe2; e6Þ as Eðe2Þ þ Eðe6Þ ¼ ð�0:1;�0:5Þ.
The embedding of a simply connected net1 is obtained by

selecting a lattice (the unit cell) and assigning coordinates to a

selected node. The coordinates of all other nodes are deter-

mined by the relative positions given by the embedding of the

underlying QG.

Definition 3.3. Embedding of a connected net in fractional

coordinates. Let

(1) p 2 RD be the position of a designated node n in the QG

(typically 0 � pi < 1), and

(2) E be an embedding of Q.

The embedding FE;n;p of a net G ¼ hQ;ZD
i is a function

GN ! R
D. It is defined as

FE;n;pðnðxÞÞ ¼ xþ p ð3Þ

if nðxÞ is generated from n and (inductively)

FE;n;pðn
00
ðxþ vÞÞ ¼ FE;n;pðn

0
ðxÞÞ þ EðeÞ ð4Þ

if e ¼ ðn0 !
v

n00Þ 2 QE.

Fig. 2 shows the embedding FE;n4;ð0:3;0:25Þ of hQL;Z3
i. For

instance, equation (3) places the nodes n4ð0; 0Þ and n4ð1; 1Þ at

ð0:3; 0:25ÞT and ð1:3; 1:25ÞT , respectively. As only n3 is

connected to n4, only the positions of nodes n3ðxÞ can be

determined immediately. For example,

Fðn3ð0; 0ÞÞ ¼ Fðn4ð0; 0ÞÞ þ Eðe6Þ

¼ ð0:3; 0:25ÞT � ð�0:5; 0:0ÞT

¼ ð0:8; 0:25ÞT or

Fðn3ð1; 2ÞÞ ¼ ð1:8; 2:25ÞT :

The knowledge of the positions of all nodes n3ðxÞ allows one to

determine the fractional coordinates of the remaining nodes:

Fðn1ð1; 1ÞÞ ¼ F
	
n1ðð1; 2ÞT � v1Þ



¼ Fðn3ð1; 2ÞÞ � ð0:3; 0:5ÞT

¼ ð1:5; 1:75ÞT or

Fðn2ð1; 1ÞÞ ¼ Fðn2ð0; 1Þ þ v5Þ

¼ Fðn3ð0; 1ÞÞ þ ð0:4; 0:5ÞT

¼ ð0:8; 1:25ÞT þ ð0:4; 0:5ÞT

¼ ð1:2; 1:75ÞT :

Proposition 3.4. The embedding of a connected net is non-

confusing (that is, no two nodes are co-located) if and only if

the underlying QG is non-confusing.

Proof. As the net is connected, the QG is also connected.

Assume that the QG is confusing: there exists a path that

confuses two nodes. This path is mapped for all embeddings of

the net onto a path with distinct, co-located nodes. Vice versa,

assume two nodes in the net’s embedding are co-located. As

the net is connected, a path connects them. This path corre-

sponds to a path in the QG and it can be shown that this path

violates Definition 3.1 or 3.2.

A few remarks are due:

(1) For QGs defining ‘parallel’, disconnected nets [such as

that of marcasite; see Thimm (2008) for a definition] with a

multiplicity M larger than one or those defined by

disconnected QGs, several nodes need to be positioned.

The pair p; n has to be replaced by the set

fpðni;mÞ 2 R
D
j1 � m � M of sub-QG ig. For example, the

marcasite net would require two pairs of nodes and positions.
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Figure 2
The embedding FE;n4;ð0:3;0:25Þ of hQL;Z3

i.

1 Equivalent to a net in Delgado-Friedrichs & O’Keeffe (2003), where E plays
the role of the placement function.



(2) Disconnected nets with a connected QG and a multi-

plicity of one (e.g. layered nets like those of graphite or

serpentine) can be represented using Definition 3.3.

(3) The definition of a non-confusing embedding of a QG

can be extended to disconnected QGs or QGs with a multi-

plicity higher than one if the relative positions of the sub-nets

are taken into account. For all pairs of nodes n0 6¼ n00 with

(a) ni;m in the same subgraph as n0 and assigned to the

vector pni;m ,

(b) nj;n in the same subgraph as n00 and assigned to the

vector pnj;n ,

(c) p0 some path between ni;m and n0, and

(d) p00 some path between ni;m and n00,

the equation pðni;mÞ þ
P

e2p0 EðeÞ 6¼ pðnj;nÞ þ
P

e2p00 EðeÞ must

hold.

4. Symmetries of embeddings

It was shown in Thimm & Winkler (2006) and Thimm (2008)

how the automorphisms of a QG allow one to determine the

(super-)space group for the symmetries of all possible

embeddings of the net defined by the QG. In other words, the

topology of a net defines the maximal symmetry an embedding

– and therefore a structure – can have. This section addresses

the relationship between an embedding and this maximal

symmetry. It will be shown that the symmetry of an embedded

net is effectively determined by the embedding of the QG.

Each QG possesses a set of automorphisms (maps of edges

and nodes) that are consistent with automorphisms of the net.

For each QG automorphism, a rotational component and

intrinsic translations of the symmetry elements of a suitable

embedding of the net can be determined (Thimm & Winkler,

2006). The embedding of the net (the fractional coordinates p

assigned to node n) determines essentially the setting of the

net. The automorphisms ’i of the QG are identified with the

elements of the space group gi 2 G of the embedding of the

net. The elements gi may, depending on the context, operate

on

(1) the nodes and edges of the QG, or

(2) on the positions of nodes in an embedding of a net.

In the latter case, g is a Seitz symbol ðW;wÞ which operates

on fractional coordinates pi of nodes ni with pj ¼ bW � pi þ wc,

gðniÞ ¼ nj, and bvc adds a suitable integer vector to v such that

the result is a vector in ½0; 1ÞD. Note that vectors w are sums of

intrinsic translations wðiÞ (determined by the QG auto-

morphism) and locational translations wðlÞ (defined by the

setting).

It follows that if ðW;wÞ describes a symmetry of an

embedded net, then ðW;wÞ is associated to some auto-

morphism of the QG. However, the inverse statement may or

may not be true. The following elucidates this discrepancy by

first defining an embedding of a QG, then defining an

embedding of a net and finally proposing when a net possesses

a certain symmetry.

Definition 4.1. Compliance of a QG embedding with an auto-

morphism. A (consistent) embedding complies with a set � of

automorphisms ’i if for the matrices Wi associated with each

’i the equation

Eð’iðeÞÞ ¼Wi � EðeÞ ð5Þ

holds for all e 2 QE.

Proposition 4.2. If a (consistent) embedding E of a QG Q is

compliant with an automorphism ’ and G ¼ hQ;ZD
i is

connected, then there exists a vector w 2 RD such that for an

arbitrary choice of n and p the embedding FE;n;p has a

symmetry with Seitz symbol ðW;wÞ.

Proof. Let n0ðxÞ be an arbitrary node in the net. As the net is

connected, there exists a path p in the QG, which, if mapped

onto the net, has the first node nð0Þ and the last node n0ðxÞ. As

Q is compliant with ’, it follows that

P
e2p

Eð’ðeÞÞ ¼
P
e2p

W � EðeÞ ¼W �
P
e2p

EðeÞ:

Choose n 2 QN, p 2 RD and a path q with
P

e2q v ¼ 0 that is

the image of the path connecting nð0Þ and ’ðnð0ÞÞ. (Each QG

is isomorphic to a QG that has a spanning tree with all edges in

this tree having zero labels.) This is possible as the auto-

morphism ’ of the QG can be understood as the image of the

quotient of net automorphisms ’ and the translations, which

implies that the automorphism of the net can be chosen such

that ’ðnð0ÞÞ ¼ ’ðnÞð0Þ. It follows that (see also Fig. 3)

Wpþ w0 ¼ pþ
P
e2q

EðeÞ: ð6Þ

As Q is compliant, equation (5) implies for path p that

P
e2p

WEðeÞ ¼
P
e2p

Eð’ðeÞÞ ¼
P

e2’ðpÞ

EðeÞ: ð7Þ

Combining equations (6) and (7) gives
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Figure 3
The mapping of the nodes and paths under ’.



Wpþ w0 þ
P
e2p

WEðeÞ

¼ W
	
pþ

P
e2p

EðeÞ



|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
a

þ w0

¼ pþ
P
e2q

EðeÞ þ
P

e2’ðpÞ

EðeÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
b

: ð8Þ

In equation (8) as well as Fig. 3, the vector a describes the

position of the node n0ðxÞ whereas b describes the position of

one of its images. As n0ðxÞ was chosen arbitrarily and W and w0

are independent of this choice, this applies to all nodes in the

net.

It is left to show that w 2 ½0; 1ÞD exists [such that ðW;wÞ is a

Seitz symbol]. This is shown by changing the construction

above slightly: choose q0 such that it connects nð0Þ and

’ðnÞð�bw0cÞ. Then, start ’ðpÞ at the end node of q0. Again, the

end node of p and ’ðpÞ are isomorphic. However, in equation

(8), the term w0 is replaced by w0 � bw0c. Defining w ¼

w0 � bw0c yields the desired result.

The proof above also shows that the choice of n and p has

no influence on whether FE;n;pðhQ;Z
D
iÞ possesses a given

symmetry or not.

5. Permissible symmetries

The above shows that the automorphism group GQG defined

by a QG is a supergroup to the automorphism group GQG;E of

the QG constrained by an embedding of the QG. Likewise, the

group Gnet;E=T of a given embedding of a net (where Gnet;E=T
is the normal subgroup of Gnet;E with respect to the translations

T ) is isomorphic to a subgroup of GQG;E (the lattice may be

incompatible with some ’). The group and GQG;E are iso-

morphic. The following therefore focuses on the relationship

between GQG and GQG;E , that is the interaction of E and

symmetries.

The constraint on an embedding to be consistent and

compliant with a set of automorphisms-cum-symmetries can

be used to establish a linear set of equations constraining E.

The relationship between the constraints and the symmetry of

an embedding is rather strong. If sets �1 and �2 of auto-

morphisms correspond to set G1 and G2 of symmetry opera-

tions, and set G2 is generated from G1, then the constraints

arising from �1 and �2 on the embedding of a QG are

identical. Turning this statement around, if a set of constraints

for the set of automorphisms �1 and �1 [�2 have the same

degrees of freedom, then the symmetry elements of G2 are

generated by G1.

6. Properties of selected nets and structures

In this section, two two-dimensional nets (one built from

lozenges and hexagons, represented by the QG QL, and a

hexagon net described by QH) and several nets derived from

known structures are used to exemplify some of the obser-

vations and conclusions that can be drawn. Only observations

that are impossible using group theory are highlighted.

6.1. The embedding of QL

The example in x2 illustrated that for a given QG the

demand for an embedding to be non-confusing may eliminate

symmetries. Such cases can be recognized by examining the

linear set resulting from Definitions 3.1 and 3.2. The QG

shown in Fig. 2 represents a case where certain symmetries

result in a confusing embedding: due to the edge between

nodes n3 and n4, an embedding of the net has either a

reflection symmetry parallel to the x axis or the y axis, but not

both. This can be shown formally. QL has four automorphisms:

the identity, one which corresponds to a twofold rotation and

two others which correspond to perpendicular mirror planes.

Table 1 shows the latter three symmetries along with node and

edge orbits.

Automorphism ’1 corresponds to a reflection perpendicular

to the x axis. Equation (5) and orbit ½e6� constrain the

embedding of e6 [ðxi; yiÞ
T denotes the value of EðeiÞ]:

Eð’1ðe6ÞÞ ¼ Eðe6Þ ¼

�
x6

y6

�
;

W1 � Eðe6Þ ¼

�
1 0

0 �1

�
�

�
x6

y6

�
¼

�
x6

�y6

�
;

which implies that y6 ¼ �y6 ¼ 0. The automorphism ’2, which

corresponds to a reflection perpendicular to the y axis, further

constrains Eðe6Þ via orbit ½e6�: x6 ¼ �x6 ¼ 0. It follows that

Eðe6Þ ¼ 0 if both symmetries are enforced. An embedding

realizing the two automorphisms is consequently confusing. In

other words, the QG QL and the resulting net can only be

embedded such that at most one of the two reflections is

realized [or the translational symmetry is reduced, which is

equivalent to increasing the size of the QG; see Schumacher

(1994)].

The rotation can be completely excluded: from orbit ½e6� for

’3 it follows directly that x6 ¼ 0 ¼ y6. It can be concluded that

an embedding FE;n;pðhQ
L;Z2
iÞ can only have the symmetry of

plane group pm or p1.
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Table 1
The automorphisms of QL.

’n Wi Node orbits Edge orbits

’1
1 0

0 �1

� �
½n1�; ½n2�; ½n3�; ½n4� ½e1; e2�; ½e3�; ½e4; e5�; ½e6�

’2
�1 0

0 1

� �
½n2; n1�; ½n3�; ½n4� ½e1; e4�; ½e2; e5�; ½e3; e3�; ½e6�

’3
�1 0

0 �1

� �
½n1; n2�; ½n3�; ½n4� ½e1; e5�; ½e2; e4�; ½e3; e3�; ½e6�



A further examination of the constraints resulting from ’1

and the consistency of the QG shows that these only corre-

spond to nine independent constraints. This allows one to

choose freely three variables. The embeddings compliant with

’1 can be described with (s; t; u; v;w 2 R)

ðEðe1Þ; . . . ; Eðe6ÞÞ

¼

�
s s 1� 2s �s s 0

1� t �t 0 1� t t u

�

and those by ’2 with

ðEðe1Þ; . . . ; Eðe6ÞÞ

¼

�
1� v� s 1� v� s v �s s w

1
2 � 1

2 0 1
2

1
2 0

�
:

However, both can be fulfilled for appropriate choices for the

free variables (u = w = 0, v = 1 � 2s, t ¼ 1
2) if the conflict for e6

is set aside. For this choice of variable, the constraints for ’3

are fulfilled and the embedding is

ðEðe1Þ; . . . ; Eðe6ÞÞ

¼

�
s s 1� 2s �s s 0
1
2 �

1
2 0 1

2
1
2 0

�
:

This embedding, though conflicting, does not fully determine

all relative node positions. In general, an embedding may be

confusing, not fully constrained, or both.

6.2. The hexagon net QH

Fig. 4 shows QH and an arbitrary embedding of its net. An

embedding with maximal symmetry would result in the

hexagon net (similar to a layer of the graphite structure).

However, despite being arbitrary, Fig. 4 evokes the presence of

twofold rotations at positions indicated by the lentil-like

shapes in the lower right of the figure. The following

demonstrates that all embeddings of QH have this symmetry.

The automorphism ’1 corresponds to a twofold rotation

with

W1 ¼

�
�1 0

0 �1

�

and has three edge orbits: ½e1; e1�, ½e2; e2� and ½e3; e3�. These

orbits result in rather similar constraints (1 � i � 3):

Eð’ðeiÞÞ ¼ W1 � EðeiÞ

,

�
�xi

�yi

�
¼

�
�xi

�yi

�

Eð’ðeiÞÞ ¼ W1 � EðeiÞ

,

�
xi

yi

�
¼

�
xi

yi

�
:

These constraints are, however, true for any E, and therefore a

twofold rotation is compatible with all two-dimensional

lattices. It can be concluded that all embeddings of QH have a

twofold rotational symmetry.

On the other hand, Fig. 4 shows that threefold rotations are

not necessarily present in all embeddings of QH even if

corresponding QG automorphisms exist. Automorphism ’2

generates the edge orbit ½e1; e2; e3� and is associated with the

matrix

W2 ¼

�
�1 �1

1 0

�
:

Equation (5) results in

Eð’ðe1ÞÞ ¼ W2 � Eðe1Þ

,

�
�x2

�y2

�
¼W2 �

�
xi

yi

�
¼

�
�x1 � y1

x1

�

Eð’ðe2ÞÞ ¼ W2 � Eðe2Þ

,

�
�x3

�y3

�
¼W2 �

�
x2

y2

�
¼

�
�x2 � y2

x2

�

Eð’ðe3ÞÞ ¼ W2 � Eðe3Þ

,

�
xi

yi

�
¼W2 �

�
x3

y3

�
¼

�
�x3 � y3

x3

�
:

Equation (1) applied to cycles (e1; e2) and (e2; e3) implies that�
x1 þ x2

y1 þ y2

�
¼

�
0

1

�
and

�
x2 þ x3

y2 þ y3

�
¼

�
1

0

�
:

These equations have a unique solution:

Eðe1Þ ¼
� 1

3

2
3

� �
; Eðe2Þ ¼

� 1
3

1
3

� �
;

Eðe3Þ ¼

2
3

� 1
3

� �
: ð9Þ

FE;n1;ð0;0Þ
positions the nodes on the centres of the threefold

rotations in a suitable unit cell and is equivalent to the stan-

dard setting of the two-dimensional plane group p3 [as given

in Hahn (1992)]. Such an embedding already possesses the

symmetry of p6mm. This can be verified by a comparison of

the symmetries of p6mm with F or the argument that the
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Figure 4
The QG QH and an arbitrary embedding of its net.



embedding E is fully constrained and the knowledge that the

hexagon net has this very symmetry.

The third and last automorphism of QH examined here has

two edge orbits ½e3� and ½e1; �ee2� and corresponds to a reflection

with

W3 ¼

�
1 0

�1 �1

�
:

Equation (5) results in y3 ¼ �
1
2 x3 for the first orbit and

x2 ¼ �x1 and y1 ¼ x2 þ y2 for the second orbit (and other

redundant constraints). These constraints, together with the

consistency of the QG, result in the embedding

Eðe1Þ ¼

�
x� 1

1� 1
2 x

�
; Eðe2Þ ¼

�
1� x

1
2 x

�
;

Eðe3Þ ¼

�
x

� 1
2 x

�
with x 2 R: ð10Þ

For x = 2/3 the embeddings described by equations (9) and

(10) are identical. However, if x is not further constrained, the

relative positions of the nodes are not definite. For x = 0.55

and a compatible unit cell, the embedding FE;n1;ð0:450;0:225Þ

results in Fig. 5. For increasing x, the nodes are displaced as

indicated by the arrows in Fig. 5 until for x = 2/3 the perfect

hexagon net is achieved.

In summary, embeddings of the hexagon net with a maximal

translational symmetry (that is two nodes per unit cell) always

have a twofold rotational symmetry. Whether or not a three-

fold rotation or one or more reflections are observable for the

embedding of the net depends on the node positions as well as

the lattice. If the constraints for a threefold rotational

symmetry are fulfilled, then this is also true for the reflections;

the embedding can have the symmetry p6mm but p6 or p3 are

forbidden.

6.3. Halite

Halite (NaCl) crystallizes in space group Fm�33m (Putnis,

1992). In a conventional setting, Na atoms are at the fractional

coordinates (0, 0, 0) and Cl atoms are at ð0; 1
2 ; 0Þ (Wenk &

Bulakh, 2004). For the purpose of determining which

symmetries require particular relative positions of the atoms

and which are independent of these, the QG Qhalite was

determined for a primitive cell containing one formula unit:

e1 ¼ Cl �!
ð1;0;0Þ

Na; e2 ¼ Cl �!
ð0;1;0Þ

Na;

e3 ¼ Cl �!
ð0;0;1Þ

Na; e4 ¼ Cl �!
ð1;1;0Þ

Na;

e5 ¼ Cl �!
ð1;0;1Þ

Na; e6 ¼ Cl �!
ð0;1;1Þ

Na:

This QG possesses automorphisms corresponding to all

symmetries observed for the halite structure, as well as auto-

morphisms exchanging the Na and the Cl atoms. The latter are

disregarded in the following. One of the automorphisms,

referred to as ’1, corresponds to a threefold rotation with

matrix

W1 ¼

0 0 1

1 0 0

0 1 1

0
@

1
A

and the edge orbits ½e1; e2; e3; � and ½e4; e6; e5�. In order for the

embedding of the QG to comply with this automorphism, the

following has to be fulfilled [EðeiÞ ¼Wui]:

u2 ¼ W1u1; u3 ¼W1u2;

u1 ¼ W1u3; u6 ¼W1u4;

u5 ¼ W1u6; u4 ¼W1u5:

Furthermore, in order for the QG to be consistent,

u1 � u2 ¼ ð1;�1; 0ÞT;

u1 � u3 ¼ ð1; 0;�1ÞT;

u1 � u4 ¼ ð0;�1; 0ÞT;

u1 � u5 ¼ ð0; 0;�1ÞT;

u1 � u6 ¼ ð1;�1;�1ÞT :

Solving these equations results in

ðEðe1Þ; . . . ; Eðe6ÞÞ

¼

x x� 1 x� 1 x x x� 1

x� 1 x x� 1 x x� 1 x

x� 1 x� 1 x x� 1 x x

0
B@

1
CA;

with the ith column being EðeiÞ and x 2 R. For x ¼ 1
2, the

embedding FE;Cl;ð0;0;0ÞðhQ
halite;Z3

iÞ corresponds to a setting of

NaCl with Cl at the origin of a primitive cell. In order for the

structure to have this symmetry, this primitive cell must have a

rhombohedral or cubic shape. However, constraining the

embedding to possess one threefold rotation and a cubic unit

cell does not necessarily result in a cubic symmetry. This can

readily be seen if one realizes that in an embedding with cubic
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Figure 5
An embedding of QH for W3, x = 0.55 and FE;n1;ð0:450;0:225Þ. Vectors a and b
indicate a valid choice for the coordinate system for the embedding.



symmetry all edges have to have the same length. Contrary to

this, the lengths of the edges je1j ¼ ð3x2 � 4xþ 2Þ1=2 and

je4j ¼ ð3x2 � 2xþ 1Þ1=2 are only equal for x ¼ 1
2.

The automorphism corresponding to an inversion has the

edge orbits ½e1; e6�, ½e2; e5� and ½e3; e4�. This implies that

u6 ¼ �u1, u5 ¼ �u2 and u4 ¼ �u3. Combining these resolves

to

ðEðe1Þ; . . . ; Eðe6ÞÞ

¼

1
2 �

1
2 �

1
2

1
2

1
2 �

1
2

� 1
2

1
2 �

1
2

1
2 �

1
2

1
2

� 1
2 �

1
2

1
2 �

1
2

1
2

1
2

0
B@

1
CA:

This fully defines the embedding. As an embedding with a

cubic symmetry is known, it can be concluded that any

structure with the halite topology, an inversion symmetry and

a cubic (rhombohedral, orthogonal, monoclinic) unit cell has

forcibly a cubic (rhombohedral, orthogonal, monoclinic)

symmetry. Without constraints from symmetries, the embed-

ding has three degrees of freedom. A variation of one of these

is equivalent to displacing the Na lattice relative to the Cl

lattice along an axis (causing bonds to have distinct lengths).

6.4. Diamond

The diamond structure has in the standard setting the

symmetry of space group Fd3m. Here we take the structure

data from Downs & Hall-Wallace (2003). The corresponding

QG has eight nodes, 16 edges and 192 automorphisms. The

ensemble of all automorphisms constrains E such that all edge

vectors have the form ð	 1
4 ;	

1
4 ;	

1
4Þ and FE;C1;ð0;0;0Þ

places the

C atoms at the expected locations. It may be worth noting that

already the consistency of the QG and the translational

symmetries corresponding to centring of the cell constrain E in

a way that only three degrees of freedom are left. This is the

same number as if the QG were created from a primitive cell

and its embedding were not constrained by any symmetry. As

with the hexagon net, the automorphisms corresponding to

inversions do not constrain E, but other automorphisms do.

Table 2 shows the remaining degrees of freedom of an

embedding if, besides the translational symmetries, the auto-

morphisms which correspond to the given symmetries of the

point group are imposed on the structure. Note that several

symmetry elements of the space group (with distinct transla-

tional components) may correspond to one of these symme-

tries. From the fact that the fourfold rotations and the fourfold

rotoinversion leave no degree of freedom, it can be concluded

that a structure with the diamond topology and fourfold

rotation or rotoinversion has a tetragonal (I41=amd) or cubic

symmetry (Fd3m), depending only on the shape of the unit

cell.

Table 2 permits the conclusion that, with the exception of 1,

all symmetries constrain the embedding. Thus, for any

embedding respecting the translational symmetry of an F-

centred structure, the minimal symmetry is F1. Compared to

this, the fourfold rotation and rotoinversions fully determine

the embedding – the symmetry of the structure depends solely

on the cell parameters. If the cell is cubic, the structure has the

symmetry of Fd3m. This is surprising if only group theory is

considered: threefold rotations are not generated by f1; 4g or

f1; 4g.

6.5. Pyrite

Pyrite (FeS2) and quartz (see x6.6) were selected as exam-

ples because the automorphisms of their QGs do not fully

constrain embeddings and they have moderate structural

complexity. Pyrite crystallizes in the cubic space group Pa3. Its

structure possesses – as expected of a structure in Pa3 – 24

automorphisms. These correspond to the symmetry elements

of Pa3. The structure is shown in Fig. 6 and the associated QG

is shown in Fig. 7.
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Table 2
Remaining degrees of freedom of an embedding of the diamond QG.

The translational symmetry is included. Rotations and reflections may have a
translational component.

Automorphism Freedom

F-centring translations 3

1 3

2½100�; 2½010�; 2½001� 1

2½011�; 2½110�; 2½101� 2

m½100�;m½010�;m½001� 1

m½011�;m½110�;m½101� 2

3½111�; 3½111�; 3½111�; 3½111� 1

3½111�; 3½111�; 3½111�; 3½111� 1

4½100�; 4½010�; 4½001� 0

4½100�; 4½010�; 4½001� 0

Figure 6
The structure of pyrite (Downs & Hall-Wallace, 2003).



The automorphism corresponding to the inversion is

examined first. This automorphism maps all Fe nodes onto

themselves, but exchanges the S node as shown in Table 3.

The Fe—S edges are all in orbits with two edges each,

whereas the S—S edges are inversely mapped onto them-

selves. The Fe—S edge orbits form pairs which if combined

accordingly result in cycles (for example, the orbits ½e1; e4� and

½e13; e15�). Equation (1) implies that

u1 � u4 þ u15 � u13 ¼

1

1

0

0
@

1
A;

equation (5) results in �u1 ¼ u4 and �u13 ¼ u15, and finally

u1 � u13 ¼

1
2

1
2

0

0
B@

1
CA:

This vector relatively positions the nodes in classes Fe1 and

Fe3 in net embeddings where they are connected to the same

representative of an S1 node. Similarly, for other pairs of Fe

nodes connected to the same S node, this distance evaluates to

a vector that is a permutation of ð0;	 1
2 ;	

1
2Þ. In other words,

Fe nodes that are linked to a common S node are situated on

lines that are perpendicular to one axis and at 45 or 135
 to the

other axes, and are at a distance equivalent to half of the

diagonal of a face of the unit cell. Consequently, if the net is

embedded using FE;Fe1;ð0;0;0Þ
for an E that fulfils the constraints

rising from an inversion symmetry, the Fe nodes are at the

positions observed for the pyrite structure. However, only 72

independent constraints arise from the consistency of E and

the inversion as compared to the 84 that would be required to

determine the embedding completely. This leaves 12 degrees

of freedom to the structure.

Compared to this, if the embedding is only constrained by a

twofold screw axis, a glide plane, a single threefold rotation or

a 3 rotoinversion, then 17, 16, 11 and 4 degrees of freedom,

respectively, remain. If the structure is constrained by all

symmetries, only one degree of freedom remains. Thus, the

embeddings compliant with a maximal symmetry can be

understood as a function Ep with p 2 R representing this

remaining degree of freedom. For instance, the embedding of

e1 can be expressed as

Epðe1Þ ¼

�p
1
2þ p

� 1
2� p

0
@

1
A:

This can be carried on to the embedding FEp;Fe1;ð0;0;0Þ
. Notably,

for p ¼ �0:3851, which is tantamount to Eðe1Þ ¼

ð0:3851; 0:1149;�0:1149Þ or the position of S1, the embedding

is equivalent to the structure found in Downs & Hall-Wallace

(2003). If the unit cell is chosen as in the latter structure

(possessing a cubic cell with a = 5.4166 Å), the length of the

Fe—S bonds is a(3p2 + 2p + 1
2)

1/2 = 2.264 Å, whereas the S—S

bonds have length (3)1/2a(2p + 1) = 2.156 Å (for p � � 1
2).

The variation of p is equivalent to displacing the S atoms

along straight lines parallel to the body diagonals (Wyckoff

position 8c). The arrow in the centre of Fig. 6 indicates such a

displacement (see also the supplementary video provided

online2). These displacements stretch the S—S edge and are

symmetric around the centre of the bond. A comparison with

the analysis of vibrations in pyrite-type structures by Lutz et al.

(1992) shows that two vibrational modes (Ag and Fgð1Þ) are

dominantly S—S bond-stretching modes. These two modes are

associated with the highest phonon energies observed for this

structure type.
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Figure 7
The QG of pyrite.

2 Supplementary videos for this paper are available from the IUCr electronic
archives (reference EO5001). Services for accessing these archives are
described at the back of the journal.



6.6. Quartz

Among the enantiomorphic phases of quartz (SiO2), only

the phases with symmetries P6222 and P3121 are considered

here. The QG in Fig. 8 was obtained from the high-

temperature phase [structural data are taken from Downs &

Hall-Wallace (2003), attributed to Kihara (1990) for T =

854 K]. An analysis of the QG’s automorphism shows that

embeddings constrained by all automorphisms corresponding

to space groups P6222 and P3121 have one and four degrees of

freedom, respectively.

If the constraints equivalent to all automorphisms are

satisfied, the embeddings of the edges are of the form

Eðe1Þ ¼
1
2 p� 1

4 ; �
1
2 p� 1

4 ;
1
6

	 

Eðe2Þ ¼

1
2 pþ 1

4 ; �
1
2 pþ 1

4 ; �
1
6

	 

Eðe3Þ ¼ �

1
2 pþ 1

4 ;
1
2 pþ 1

4 ;
1
6

	 

Eðe4Þ ¼ �

1
2 p� 1

4 ;
1
2 p� 1

4 ; �
1
6

	 

Eðe5Þ ¼ �p; � 1

2 p� 1
4 ; �

1
6

	 

Eðe6Þ ¼ �p; � 1

2 pþ 1
4 ; �

1
6

	 

Eðe7Þ ¼ p; 1

2 pþ 1
4 ; �

1
6

	 

Eðe8Þ ¼ p; 1

2 p� 1
4 ;

1
6

	 

Eðe9Þ ¼

1
2 pþ 1

4 ; p; 1
6

	 

Eðe10Þ ¼

1
2 p� 1

4 ; p; � 1
6

	 

Eðe11Þ ¼ �

1
2 p� 1

4 ; �p; 1
6

	 

Eðe12Þ ¼ �

1
2 pþ 1

4 ; �p; 1
6

	 

with p 2 R. Given the orientation of the edges in Fig. 8, the

relative positions of two Si atoms bonded to the same O atom

can be expressed as Eðe1Þ þ Eðei þ 1Þ (for odd i). For example,

Eðe1Þ þ Eðe2Þ ¼ �
1
2 ;�

1
2 ;

1
3

	 

. These vectors are independent

from p and therefore the positions of the Si atoms

depend only on the setting. For p = �0.0843, the embedding

is equivalent to the high-temperature quartz structure.

For a hexagonal cell (a = b, � = 120
), the bonds have

length 1
2 ½a

2 p2 þ 1
4

	 

þ ðc2=9Þ�1=2

’ 1:545þ 1:98p2 for the cell

parameters of the high-temperature modification and

p 2 ½�0:2; 0:0�.
If only the symmetries corresponding to the low-

temperature phase are enforced, E has four degrees of

freedom (p, q, r and s). For e1 and e2 the embeddings are

Eðe1Þ ¼ ðp� q;�q; sÞ

Eðe2Þ ¼ 1� 2qþ rþ p;�r; s� 1
3

	 

Eðe1Þ � Eðe2Þ ¼ q� r� 1; r� q; 1

3

	 

:

Obviously, only the distance along the c axis of the Si atoms is

definite. However, the positions of the O atoms are again less

constrained than the positions of the Si atoms.

6.7. Garnets

Almandine (Fe3Al2Si3O12), a garnet with space group Ia3d,

was chosen for the reason that garnets exhibit rather complex

yet highly symmetric structures. During the conversion of the

structure, the Fe atoms were considered as not bonded and

were therefore removed. The resulting QG has 136 nodes and

192 edges. If only the consistency of the QG is taken into

account, its embedding has 405 degrees of freedom as

compared to 201 if the centring translation is also included.

Table 4 shows the degrees of freedom an embedding of a

garnet QG has if the embedding is constrained by selected sets

of automorphisms. For simplicity, the symmetries of an
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Table 3
Selected automorphisms of the pyrite QG.

W Symmetry Node orbits Edge orbits

�1 0 0

0 �1 0

0 0 �1

0
@

1
A 1 ½Fe1�; ½Fe2�; ½Fe3�; ½Fe4�; ½S4; S1�; ½S5; S2�; ½S6; S3�; ½S7; S8� ½e1; e8�; ½e2; e7�; ½e3; e11�; ½e4; e10�; ½e5; e9�; ½e6; e12�;

½e13; e19�; ½e14; e23�; ½e15; e21�; ½e16; e24�; ½e17; e20�; ½e18; e22�;
½e25; e26�; ½e27; e28�

�1 0 0

0 �1 0

0 0 1

0
@

1
A 21 ½Fe1;Fe2�; ½Fe3;Fe4�; ½S2; S1�; ½S4; S5�; ½S6; S8�; ½S7; S3� ½e1; e4�; ½e2; e5�; ½e3; e6�; ½e7; e9�; ½e8; e10�; ½e11; e12�;

½e13; e15�; ½e14; e16�; ½e17; e18�; ½e19; e21�; ½e20; e22�; ½e23; e24�;
½e25; e25�; ½e26; e26�; ½e27; e27�; ½e28; e28�

0 0 1

1 0 0

0 1 0

0
@

1
A 3� ½Fe1�; ½Fe4;Fe2;Fe3�; ½S1; S3; S2�; ½S4; S6; S5�; ½S7�; ½S8� ½e1; e3; e2�; ½e4; e6; e5�; ½e7; e14; e19�; ½e8; e13; e20�; ½e9; e16; e21�;

½e10; e15; e22�; ½e11; e17; e23�; ½e12; e18; e24�; ½e25; e27; e26�; ½e28�

0 �1 0

0 0 �1

�1 0 0

0
@

1
A 3

þ
½Fe1�; ½Fe4;Fe3;Fe2�; ½S1; S5; S3; S4; S2; S6�; ½S8; S7� ½e1; e5; e3; e4; e2; e6�; ½e7; e21; e14; e9; e19; e16�;

½e8; e22; e13; e10; e20; e15�; ½e11; e24; e17; e12; e23; e18�;
½e25; e26; e27; e25; e26; e27�; ½e28; e28�



embedding of a net instead of the automorphisms are given;

rotations and mirror planes may include screw axes or glide

planes. (A given automorphism may correspond to several

symmetry elements; e.g. a parallel screw and rotation axis.)

Also, many redundant sets are omitted, as, due to the cubic

symmetry of garnet, they constrain E in similar ways (e.g.

ft; 2½100�g, ft; 2½010�g and ft; 2½001�g).

All automorphisms constrain the embedding of the net to

various degrees. As for all sets of automorphisms, ft; ’g
constrains E more than t (see the upper part of Table 4); it can

be concluded that no symmetry is implicit. However, if the

embedding has at least two perpendicular fourfold rotations

(rotoinversions), the threefold rotations in the arrangement

typical for a cubic space group are implicit (see the entries in

Table 4 marked with a dagger). Therefore, if the unit cell is

cubic, a structure with these symmetries has at least the

symmetry of I4132 (I43d). Contrary to this, an argument

relying on group theory only would allow space groups

I41=acd (I42d), also for a cubic unit cell.

In principle, space group Ia3d has three cubic translation-

engleiche subgroups. Thus, a displacive phase transition of

garnet could lead to a structure with the symmetries of space

groups Ia3, I4132 or I43d. All three are possible from the

perspective of this article: constraining the QG embedding

with the centring translation and all threefold rotations,

possibly in combination with other additional symmetries,

produces sets of constraints with four different degrees of

freedom (16, 8, 7 and 3; see the lower part of Table 4). As the

equivalent embeddings have cubic symmetries (due to the

presence of threefold rotational axes), these sets must corre-

spond to one of the four possible space groups.

If constrained by all automorphisms, the embeddings E of

edges corresponding to Al—O and Si—O bonds are the

permutations of vectors

	p

	q	 1
8

	r

0
@

1
A and

	p	 1
4

	q

	r

0
@

1
A;

respectively, with p; q; r 2 R. All Si atoms are bonded to Al

atoms via O-atom bridges. Adding the embeddings of the

edges of an O-atom bridge (while respecting their orienta-

tions) always results in a definite vector. Therefore, in a fully

constrained embedding of a net, the nodes at the ends of the

bridges are at definite relative positions (that is, the Si and Al

lattices and their relative positions are determined). For an

arbitrarily chosen bridge, this is

�p

r

q� 1
8

0
@

1
Aþ � 1

4þ p

�r

�q

0
@

1
A ¼ � 1

4

0

� 1
8

0
@

1
A:

For all O-atom bridges, these relative positions are described

by permutations of the vector ð0;	 1
8 ;	

1
4Þ; that is, the cations

are at a distance of ½ð51=2Þ=8�a. From the constraints, here for

space reasons, it is evident that a variation of any of the three

free parameters would displace the O atoms by the same

distance along a line parallel to an axis. To be precise, one

third of the O atoms move in the direction of the a axis, one

third move along the b axis and the remaining along the c axis.

For each atom there exists another atom moving in the inverse
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Table 4
Degrees of freedom for the garnet QG and given sets of automorphisms.

t is the translation centring of the unit cell, m is a glide or mirror plane, and 2
and 3 are rotation or screw axes. The notation [abc] indicates the orientation
of an axis or a plane normal: [100] designates a line parallel to the a axis, [110]
designates a line parallel to the diagonal in the ab plane etc.

Automorphisms Degrees of freedom

1 405

t 201

t;m½100� 100

t;m½110� 100

t; 2½011� 99

t; 2½100� 99

t; 1 90

t; 3½111� 67

t; 3½111� 30

t; 41½100� 49

t; 4½100� 48

t; all 2 8

t; all 41y 8

t; all 4y 7

t; all m 3

t; all 3 16

t; all 3; all 3 7

t; all 3; all 41y 8

t; all 3; all 4y 7

t; all 3; 1 7

t; all 3; all 2 3

All automorphisms 3

Figure 8
The quartz QG.



direction. Fig. 9 illustrates this for one parameter (see also the

supplementary video provided online). Any variation of these

parameters preserves the centre of mass of a unit cell. In an

embedding with a standard setting, the Al, Si and O atoms

must be positioned at the Wyckoff positions 16a, 24d and 96h,

respectively.

7. Comparison of the present work with that of Eon
(1999)

Eon’s work (Eon, 1999) and the work presented here are

superficially distinct: Eon uses cycles, co-cycles and projec-

tions of the spaces defined by them to consider atom positions

in Euclidean space. In contrast, in the present work sums over

labels and vectors assigned to edges in cycles and paths are

used to consider relative atom positions.

On a closer look, however, similarities become evident:

(a) The projection of (co-)cycles is equivalent to the

summation on edge embeddings in cycles. The observation by

Eon that the sums
P

nici (where ni is an integer and ci are the

elements of the co-cycle space) correspond to the demand that

an embedding fulfils equation (1); the (integer-valued) sumP
e2c v represents the fact that nodes belong to a given lattice.

(b) The proof by Eon concerning the relation between the

automorphism group of the (unlabelled) QG (without loops

and bridges) and the space group of an embedding with

maximal symmetry is in many aspects equivalent to the proof

given in Thimm & Winkler (2006). This relationship is the

basis for the discussion in x4.

(c) It is likely that the theory presented here can be

expressed using the tools used in Eon’s work.

Differences are:

(a) Eon demands that in an embedding bonds have

comparable lengths and nonbonded atoms are at a minimal

distance larger than this. Here, the only demand is that no two

nodes are at the same position. Whereas the earlier demand is

certainly more realistic in a physical context, solving the

corresponding equations is more involved than the equations

resulting from the definition used here.

(b) The approach using (co-)cycles has the shortcoming that

loops and bridges (including singly bonded atoms) cannot be

dealt with easily and Eon therefore excludes them. However,

many structure types do have QGs with loops or bridges

(singly bonded atoms are bonded via bridges) – they do not

cause difficulties in the approach presented here. As illu-

strated in x2, bridges have a major impact on the symmetry of

a structure and singly bonded atoms cannot be neglected.

(c) Although Eon’s work does address the relationship

between the automorphism group of the QG and the space

group of the embedding, he does not push the issue quite as

far: no algorithm is given that allows the calculation of the

embedding of the QG and the net or that relates nodes to

Wyckoff positions.

(d) Archetypes have no equivalent here – with the trivial

exception that for some QGs the cyclomatic number equals

the dimension of its edge labels. Then, the archetype and the

net, as defined by the QG, are isomorphic.

(e) The proofs relating the automorphism group of the QG

and the space group of an embedding have a major difference:

Eon’s version is valid for archetypes; the proof presented here

is valid for an embedding in a space of a given dimensionality

(typically smaller than that of the archetype’s embedding). A

projection of the archetype’s embedding into a lower-

dimensional space respecting the constraints represented by

the edge labels in a QG is not trivial. The example given by

Eon uses a graph for which the cyclomatic number is conve-

niently 3; all connected nets based on the chosen graph are

isomorphic. If the cyclomatic number of the base graph is

larger than 3, more than one net with isomorphic base graphs

exist.

(f) In the opinion of the author, the most important

difference is the possibility of determining constraints on

relative atom positions and associating them with (selected)

symmetries.

8. Distances and bond angles versus symmetry

One of the referees for this paper posed the question as to

whether the symmetry constraints can actually force nodes

into physically meaningless positions without causing confu-

sion. An examination of about 80 structures revealed no

structure for which this is truly the case [although nets that are

impossible to embed such that these trivial constraints are

fulfilled greatly outnumber those for which it is possible

(Thimm, 2004)]. Only the nets of structures (e.g. quartz) that

undergo displacive phase transitions can be considered as such
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Figure 9
The projection of the garnet structure without cations along the c axis.
The arrows indicate the changes of the positions of the O atoms for
decreasing q from the value observed for the almandine structure. O
atoms surrounded by dots are displaced perpendicular to the image plane.



cases. However, the displacements of atoms in such structures

are in general minor, and to declare the high-symmetry phases

as meaningless is far fetched.

The construction of nets for which a maximal symmetry

forces nodes onto such positions, and the difference is not

equivalent to one between a high- and low-symmetry ‘phase’,

is surprisingly difficult. A projection along the c axis and an

oblique view of low-symmetry embedding of such a net is

shown in Fig. 10(a). This net has nodes of degree one, two and

six, a sheet-like structure, and a maximal-symmetry embed-

ding in space group P6=mmm. This symmetry is only possible

if all nodes in a sheet are positioned in a plane. However,

(1) this makes it impossible to maintain the constraint on

the distances between bonded atoms and

(2) the embedding has 30
 or smaller bond angles.

An out-of-plane arrangement (similar to the one shown in

Fig. 10b) agrees in terms of distances and bond angles with

known structures. This arrangement, though, is incompatible

with sixfold rotations and mirror planes parallel to the sheets.

The present author knows of no crystal structures with similar

characteristics.

Non-confusing embeddings of nets with confusing maximal-

symmetry embeddings may be considered to fall in this cate-

gory. Non-confusing embeddings of nets represented by QL in

three-dimensional space can fulfil the constraint on bond

lengths and angles, but only if the singly connected nodes are

at positions well outside the sheets formed by the other nodes

(see Fig. 11). This, however, disallows twofold rotations

around axes parallel to the sheet, which can be achieved if all

connected nodes are embedded in a plane.

9. Software

The quotient graphs shown in this paper were created using a

modified version of Jmol. This version of Jmol and software

that enables the calculation of QG automorphisms, the

establishment and solution of the constraints, and the creation

of CIFs for the obtained embeddings can be obtained from the

author’s web page at http://www.adam.ntu.edu.sg/~mgeorg.

10. Conclusions

An observation of crystal structures and two-dimensional

grids shows that for a given topology (connectivity) certain

symmetries are forbidden or necessary.

This observation is substantiated by examining how the

graph-theoretical equivalents of structures are embedded.

This is achieved by defining an embedding of quotient graphs

and extending this definition to nets (the graph-theoretical

equivalents of structures). Then, for embeddings of a quotient

graph, constraints on the relative node positions are proposed

which ensure that the embedding of the net possesses a given

symmetry and that distinct nodes are at distinct locations. It is

shown that if the embedding of a quotient graph fulfils certain

conditions, then the embedding of the corresponding net has

an equivalent symmetry.

Two two-dimensional examples illustrate the definitions and

proposed theorems.

For the halite structure it is shown that imposing a single

threefold rotational symmetry leaves one degree of freedom

to the structure, whereas an inversion fully defines it and

therefore imposes a cubic symmetry (presuming a cubic unit

cell). Diamond is cited as an example where, in contrast to

halite, the demand for an inversion symmetry does not

constrain the structure (that is, all structures with the diamond

topology have an inversion symmetry). For the pyrite, quartz

and garnet structures it is shown that even the demand for a

maximal (cubic) symmetry does not fully constrain the struc-

ture and that reduced symmetries have a more or less

constraining influence on the structure. However, in all three

fully constrained structures, the Fe, Si and Al—Si lattices,
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Figure 11
An embedding of QL with reasonable bond angles and distances between
nodes.

Figure 10
A net for which a maximal-symmetry embedding is physically mean-
ingless yet non-confusing. (a) A projection of an embedding with
maximal symmetry along the z axis. (b) An oblique projection
perpendicular to the z axis of an out-of-plane arrangement with
physically reasonable distances between nodes and bond angles.



respectively, are definite, whereas the S and O atoms are free

to move.

For the garnet structure it is shown that certain space

groups in combination with a cubic cell are forbidden.

Overall, the examples show that an embedded net with a

given topology may by default possess a symmetry different

from P1. Enforcing the presence of some symmetry elements

may implicitly include others in excess of those predicted by

group theory.

In all the examples examined, the embeddings determined

from the automorphisms of the quotient graphs and the

structures observed in nature agree well.

A comparison with the approach of Eon (1999) highlights

the common aspects and differences of the two approaches. A

discussion of whether constraints on distances between atoms

and on bond angles result in restrictions on symmetry without

confusing nodes shows that, in principle, such restrictions are

possible but probably rare for crystal structures.
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